Maths Exam

1. Solution of linear equations

We have the following equations: $$\begin{eqnarray} -4 x +6y &=& 1 \\ 3 x -3 y &=& 2 \end{eqnarray}$$
Correct Answer
$$ x=\frac{5}{2}, y=\frac{11}{6} $$

2. Differentiation A

Differentiate the following equation: $$\exp\left(\sin\left(x\right)\cos\left(x\right)\right)$$
Correct Answer
$$\exp\left(\sin\left(x\right)\cos\left(x\right)\right)\left({\cos\left(x\right)}^{2} - {\sin\left(x\right)}^{2}\right)$$

3. Differentiation A

Differentiate the following equation: $$-2x - \frac{-1}{x} + \cos\left({x}^{2}\right)$$
Correct Answer
$$-2 - \frac{1}{{x}^{2}} - 2\sin\left({x}^{2}\right)x$$

4. Differentiation B

Differentiate the following equation: $$\frac{\frac{6\ln\left(x\right)}{x} - x\left(x + 6\right)}{3}$$
Correct Answer
$$\frac{\frac{6}{{x}^{2}} - \frac{6\ln\left(x\right)}{{x}^{2}} - \left(2x + 6\right)}{3}$$

5. Integration

Please carry out the following integral: $$ \int \sin\left(3x\right) dx$$
Correct Answer
$$ \frac{(-\cos\left(3x\right))}{3} $$

6. Integration

Please carry out the following integral: $$ \int \cos\left(-4x - 2\right) dx$$
Correct Answer
$$ \frac{(-\sin\left(-4x - 2\right))}{4} $$

7. Consider the following differential equation: $$ -5\frac{d^2y}{dx^2} - 6\frac{dy}{dx} - 5y = 0 $$

Find the general solution to the above equation.
Correct Answer
$$ \exp\left(\frac{-3x}{5}\right)\left(A\sin\left(\frac{-4x}{5}\right) + B\cos\left(\frac{-4x}{5}\right)\right) $$

8. Consider the following series: $$ \sum_{j=0}^{14} 3\left(j - 5\right) $$

What does the sum evaluate to?
Correct Answer
$$ 90$$

9. Solution of linear equations

We have the following equations: $$\begin{eqnarray} 6 x +5y &=& 2 \\ -5 x -4 y &=& 1 \end{eqnarray}$$
Correct Answer
$$ x=-13, y=16 $$

10. Differentiation A

Differentiate the following equation: $$\cos\left(-2x - {x}^{-6}\right)$$
Correct Answer
$$(-\sin\left(-2x - {x}^{-6}\right)\left(-2 - \frac{-6}{{x}^{7}}\right))$$


Other Articles:

Quantum Mechanics for programmers

A quick demo showing how to make simulations of simple quantum mechanics systems in javascript.

BodyWorks: Neuromuscular Activity / Muscle EMG

An interactive simulation showing how nerves travel to and down muscles, and how this gets picked up by EMG sensors.

Generating Plant-like Structures Using Neural Networks




© Hugo2015. Session @sessionNumber