Maths Exam

1. Solution of linear equations

We have the following equations: $$\begin{eqnarray} x +3y &=& 4 \\ 4 x +6y &=& 3 \end{eqnarray}$$
Correct Answer
$$ x=\frac{-5}{2}, y=\frac{13}{6} $$

2. Differentiation A

Differentiate the following equation: $$\exp\left({x}^{2} - \sqrt{x}\right)$$
Correct Answer
$$\exp\left({x}^{2} - \sqrt{x}\right)\left(2x - \frac{1}{2\sqrt{x}}\right)$$

3. Differentiation A

Differentiate the following equation: $$\sin\left(\ln\left(x - 1\right)\right)$$
Correct Answer
$$\frac{\cos\left(\ln\left(x - 1\right)\right)}{x - 1}$$

4. Differentiation B

Differentiate the following equation: $$\frac{\left(\sqrt{x} - \sin\left(x\right)\right)\sqrt{x}}{\sqrt{-6}}$$
Correct Answer
$$\frac{\left(\frac{1}{2\sqrt{x}} - \cos\left(x\right)\right)\sqrt{x} + \frac{\sqrt{x} - \sin\left(x\right)}{2\sqrt{x}}}{\sqrt{-6}}$$

5. Integration

Please carry out the following integral: $$ \int \sqrt{(-x) - 1} dx$$
Correct Answer
$$ \frac{-2{\left((-x) - 1\right)}^{\frac{3}{2}}}{3} $$

6. Integration

Please carry out the following integral: $$ \int \frac{-1}{2x} dx$$
Correct Answer
$$ null $$

7. Consider the following differential equation: $$ (-\frac{d^2y}{dx^2}) - 4\frac{dy}{dx} - 5y = 0 $$

Find the general solution to the above equation.
Correct Answer
$$ \exp\left(-2x\right)\left(A\sin\left((-x)\right) + B\cos\left((-x)\right)\right) $$

8. Consider the following series: $$ \sum_{j=0}^{16} -5\left(j - 3\right) $$

What does the sum evaluate to?
Correct Answer
$$ -425$$

9. Solution of linear equations

We have the following equations: $$\begin{eqnarray} -x +4y &=& 2 \\ x -3 y &=& 2 \end{eqnarray}$$
Correct Answer
$$ x=14, y=4 $$

10. Differentiation A

Differentiate the following equation: $$\sqrt{\sin\left(2x\right)}$$
Correct Answer
$$\frac{\cos\left(2x\right)}{\sqrt{\sin\left(2x\right)}}$$


Other Articles:

Benzene QMC Gallery

A gallery of images from an attempt to model the benzene ground state using a variational and diffusion monte carlo method.

Simulation of flooding in New Orleans

A not-very-accurate simulation of the flooding in New Orleans.

Quantum Mechanics

A no-nonsense description of quantum mechanics with no maths or philosophy. The concepts are explained with animations, which are mainly computer simulations of electrons.




© Hugo2015. Session @sessionNumber